15 - 869Lecture 12 Body Pose and Dynamics

Yaser Sheikh Human Motion Modeling and Analysis Fall 2012

Debate Advice

Affirmative Team

- Thesis Statement: Every (good) paper has a thesis.
 What is the most provocative statement the paper is trying to make?
- **Spill the beans early**: Explain the key insight of the paper as soon as possible. Like on Slide 1.
- **Teaser**: Show an example result first so that it's clear to everyone what the goal is. Also mention the input, clearly.
- Equations: Explain them carefully or don't include them.

Debate Advice

Improvement Team

- Examine the Thesis: Is it sound? Does it overreach? Is it practically useful?
- State a Core Objection: State a Core Objection early in the process.
- **Explain limitations**: Usually in the paper. Assumptions, model restrictions, computation, etc.

Human Motion

How can we model human motion?

K

Why Model Motion?

Keyframing

Why Model Motion?

Labeling

 \mathbf{X}_{t}^{i} : Point Position at time t \mathbf{Z}_{t}^{i} : Point Label at time t

Why Model Motion? 3D Reconstruction

2D Anatomical Landmarks $\mathbf{X}_{t} = \begin{bmatrix} X_{1} & X_{2} & X_{3} & X_{4} & & X_{P} \\ Y_{1} & Y_{2} & Y_{3} & Y_{4} & \cdots & Y_{P} \end{bmatrix}$

Why Model Motion?

Action Recognition

Knowns and Unknowns

There is structure in human pose and motion

Lecture in One Slide

Dynamics

Latent Variable Model

Latent Dynamics

Representing Pose Configuration Space

The Space of Actions

Human Motion

Frame-wise Independent

Data Space

$p(\mathbf{X}_1, \cdots, \mathbf{X}_F) = p(\mathbf{X}_1)p(\mathbf{X}_2)\cdots p(\mathbf{X}_F)$

Autoregressive Models First-order Markov Model

Data Space

$$p(\mathbf{X}_1, \cdots, \mathbf{X}_F) = p(\mathbf{X}_1) \prod_{t=2}^F p(\mathbf{X}_t | \mathbf{X}_{t-1})$$
$$p(\mathbf{X}_t | \mathbf{X}_1, \cdots, \mathbf{X}_{t-1}) = p(\mathbf{X}_t | \mathbf{X}_{t-1})$$

First-Order Markov Models

Linear Dynamics

Markov Models

First Order

 $\mathbf{X}_{t+n} = \mathbf{D}^n \mathbf{X}_t$

Markov Model

Reconstruction

First-order AR

Reconstruction

Ground truth Reconstructed

Autoregressive Models First-order Markov Model

First-Order AR

Prediction

Observability Matrix

First-Order AR

Linear Prediction

First-Order AR

Prediction Generalization

First Order AR

Prediction Generalization

Autoregressive Models First-order Markov Model

Data Space

$p(\mathbf{X}_t | \mathbf{X}_{t-1}) = \mathcal{N}(\mathbf{X}_t | \mathbf{D}\mathbf{X}_{t-1}, \Sigma)$

Autoregressive Models

Second-Order Markov Model

AR Models

Second-Order Systems

Considerations AR systems

- Complexity: Curse of dimensionality, computation, compaction?
- Predictive Precision: How accurately does the model predict observations?
- Generalization Ability: How well does the model generalize to new data?

Considerations Trade-offs

- Memory: How far back should you look? How much is it worth in extra dimensionality?
- Linearity: How much of a limitation is the linearity of the dynamical system?

Pose Correlations

Latent Variable Models

• How many degrees of freedom are there *really*?

 $\mathbf{X}_t \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Latent Variable Models

Linear Models

Linear Projection Principal Component Analysis

$$\{\mathbf{X}_n\}$$
 : Training Data $\mathbf{X}_t \in \mathbb{R}^D$

 $\mathbf{Y}_t \in \mathbb{R}^M \quad M < D$

Distribution

 $p(\mathbf{X}_t | \mathbf{Y}_t)$

 $\mathbf{X}_{t} = \mathbf{B}\mathbf{Y}_{t} + \mu + \epsilon$ $p(\mathbf{Y}_{t}) = \mathcal{N}(\mathbf{z}|0, \mathbf{I})$ $p(\mathbf{X}_{t}|\mathbf{Y}_{t}) = \mathcal{N}(\mathbf{X}_{t}|\mathbf{B}\mathbf{Y}_{t} + \mu, \sigma^{2}\mathbf{I})$

Generative View of PCA

Sampling Standing Up

 $\mathbf{X}_t \sim \mathcal{N}(\mu, \Sigma)$

Sampling Standing Up

 $p(\mathbf{X}_t | \mathbf{Y}_t) = \mathcal{N}(\mathbf{X}_t | \mathbf{B}\mathbf{Y}_t + \mu, \sigma^2 \mathbf{I})$

Graphical Model

Component Analysis

 $\mathbf{X}_t = \mathbf{B}\mathbf{Y}_t + \mu + \epsilon$

 $\mathbf{X}_t = \mathbf{B}\mathbf{Y}_t + \mu + \epsilon$

PCA Works!

Less than 5cm max-error with <30 components

Well...Somewhat...

PCA works when Action is Known

Overcomplete Dictionaries

Ramakrishna et al. 2012

$$\arg\min_{\mathbf{Y}_t} \|\mathbf{X}_t - \mathbf{B}\mathbf{Y}_t\|_2$$

L1-norm "encourages" sparsity in \boldsymbol{Y}

3D Reconstruction

Reprojection Error Decreases at Each Iteration

Iteration No.: 1

3D Reconstruction

3D Pose and Camera

Dynamical Models

Graphical Models

Linear Dynamical System Graphical Summary

 $\mathbf{X}_{t+1} = \mathbf{D}\mathbf{X}_t \quad \mathbf{X}_t = \mathbf{B}\mathbf{Y}_t$

Model Reduction

Dynamics in the Latent Space

 $\mathbf{X}_{t+1} = \mathbf{D}\mathbf{X}_t \qquad \mathbf{X}_t = \mathbf{B}\mathbf{Y}_t$ $= \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$

 $\mathbf{B}\mathbf{Y}_t = \mathbf{D}\mathbf{B}\mathbf{Y}_t$ $\mathbf{Y}_t = \mathbf{B}^T \mathbf{D}\mathbf{B}\mathbf{Y}_t$ $\mathbf{Y}_t = \mathbf{G}\mathbf{Y}_t$

 $\mathbf{G} = \mathbf{B}^T \mathbf{D} \mathbf{B}$

Dynamical Models

Graphical Models

$$p(\mathbf{Y}_t | \mathbf{Y}_{t-1}) = \mathcal{N}(\mathbf{Y}_t | \mathbf{G}\mathbf{Y}_{t-1}, \Gamma)$$

$$p(\mathbf{X}_t | \mathbf{Y}_t) = \mathcal{N}(\mathbf{X}_t | \mathbf{B}\mathbf{Y}_t, \Sigma)$$

$$p(\mathbf{Y}_1) = \mathcal{N}(\mathbf{Y}_1 | \mu, \mathbf{V})$$

Nonlinear Dynamical Models?

- Linear-Gaussian Models work for individual activities
- Nonlinear Latent Variable Models:
 - Density Networks
 - Generative Topographic Mapping
 - Kernel PCA
 - Gaussian Process Latent Variable Models
- Nonlinear Dynamics:
 - Switching Linear Dynamical Models
 - Gaussian Process Dynamical Models
 - Sampling-based methods (i.e., Particle Filters)

Reading List

- Pavlovic et al. Learning Switching Linear Models of Human Motion
- Lawrewnce et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
- Fleet, Motion Models for People Tracking.
- Ramakrishna et al., Reconstructing 3D Human Pose from 2D Image Landmarks, 2012.