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Affirmative Team
Debate Advice

• Thesis Statement: Every (good) paper has a thesis. 
What is the most provocative statement the paper is 
trying to make?

• Spill the beans early: Explain the key insight of the 
paper as soon as possible. Like on Slide 1.

• Teaser: Show an example result first so that it’s clear 
to everyone what the goal is. Also mention the input, 
clearly.

• Equations: Explain them carefully or don’t include 
them.



Improvement Team
Debate Advice

• Examine the Thesis: Is it sound? Does it over-
reach? Is it practically useful?

• State a Core Objection: State a Core Objection 
early in the process. 

• Explain limitations: Usually in the paper. 
Assumptions, model restrictions, computation, etc. 



How can we model human motion?
Human Motion



Keyframing
Why Model Motion?
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Why Model Motion?
Labeling

: Point Position at time tXi
t

Zi
t : Point Label at time t



3D Reconstruction
Why Model Motion?

2D Anatomical Landmarks 3D Human Pose and Camera
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Why Model Motion?
Action Recognition



There is structure in human pose and motion
Knowns and Unknowns
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Notation
Lecture in One Slide
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Configuration Space
Representing Pose

Xt 2 RD

Observation

D Points D Joint AnglesD Features



Subtitle

p(X1, · · · ,XF )

The Space of Actions



Frame-wise Independent
Human Motion

Xt Xt+1 Xt+2 Xt+3

p(X1, · · · ,XF ) = p(X1)p(X2) · · · p(XF )

Data Space



p(X1)p(X2) · · · p(XF )

p(Xt) = N (Xt|µ,⌃)



First-order Markov Model
Autoregressive Models

Xt Xt+1 Xt+2 Xt+3

p(X1, · · · ,XF )

p(Xt|X1, · · · ,Xt�1) = p(Xt|Xt�1)

= p(X1)
FY

t=2

p(Xt|Xt�1)

Data Space



Linear Dynamics
First-Order Markov Models

Xt Xt+1 Xt+2 Xt+3

p(Xt|Xt�1)

Xt = f(Xt�1) Dynamical Function

Xt+1 = DXt Linear Dynamics

Data Space



First Order
Markov Models

Xt+n = DnXt

Xt+1 = DXt

=

XtXt+1 D

D 2 RD⇥D



Reconstruction
Markov Model
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Reconstruction
First-order AR

Ground truth
Reconstructed



First-order Markov Model
Autoregressive Models

Xt Xt+1 Xt+2 Xt+3

p(X1, · · · ,XF ) = p(X1)
FY

t=2

p(Xt|Xt�1)

p(Xt|Xt�1) = N (Xt|DXt�1,⌃)

Data Space



Prediction
First-Order AR
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Linear Prediction
First-Order AR

Ground truth
Predicted
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Prediction Generalization
First-Order AR
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Prediction Generalization
First Order AR

Ground truth
Predicted

2

666664

X̄t+k

X̄t+1+k

X̄t+2+k
...

X̄t+F+k

3

777775
=

2

666664

D
D2

D3

...
DF

3

777775
Xt+k



First-order Markov Model
Autoregressive Models

Xt Xt+1 Xt+2 Xt+3

p(Xt|Xt�1) = N (Xt|DXt�1,⌃)

Data Space



Ideas?



Second-Order Markov Model
Autoregressive Models

Xt Xt+1 Xt+2 Xt+3

p(X1, · · · ,XF ) = p(X1)p(X2|X1)
FY

t=1

p(Xt|Xt�1,Xt�2)

Data Space



Second-Order Systems
AR Models

=
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AR systems
Considerations

• Complexity: Curse of dimensionality, computation, 
compaction?

• Predictive Precision: How accurately does the 
model predict observations?

• Generalization Ability: How well does the model 
generalize to new data?



Trade-offs
Considerations

• Memory: How far back should you look? How 
much is it worth in extra dimensionality?

• Linearity: How much of a limitation is the linearity 
of the dynamical system?
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Ideas?



Latent Variable Models
Pose Correlations

• How many degrees of freedom are there really?

Xt ⇠ N (µ,⌃)



Linear Models
Latent Variable Models

= w1 +w2 +w3 · · ·



Principal Component Analysis
Linear Projection

M < D

Xt 2 RD

Yt 2 RM

{Xn} : Training Data

=

Yt

BXt

Latent Variable Model



Distribution
Probabilistic PCA

Xt = BYt + µ+ ✏

p(Yt) = N (z|0, I)

p(Xt|Yt) = N (Xt|BYt + µ,�2I)

p(Xt|Yt)



Generative View of PCA
Probabilistic PCA
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Sampling Standing Up
Probabilistic PCA

Xt ⇠ N (µ,⌃)



Sampling Standing Up
Probabilistic PCA

p(Xt|Yt) = N (Xt|BYt + µ,�2I)



Component Analysis
Graphical Model

Y1 Y2 YM

X1 X2 X3 XD

· · ·

· · ·

Xt = BYt + µ+ ✏



Component Analysis
Graphical Model

Xt

Yt

Xt = BYt + µ+ ✏

Data Space

Latent Space



Less than 5cm max-error with <30 components
PCA Works!
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PCA works when Action is Known
Well...Somewhat...
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Ramakrishna et al. 2012
Overcomplete Dictionaries

argmin
Yt

kXt �BYtk2 + �kYtk1

Xt = BYt

=

Xt = BYt

=

L1-norm “encourages” sparsity in Y



Reprojection Error Decreases at Each Iteration
3D Reconstruction



3D Pose and Camera
3D Reconstruction
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· · ·

· · ·

Graphical Models
Dynamical Models

Xt Xt+FXt+2Xt+1

Yt Yt+1 Yt+2 Yt+FLatent Space

Data Space



Graphical Summary
Linear Dynamical System

Xt
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Linear Dynamics Latent Variable 
Model



Dynamics in the Latent Space
Model Reduction

Xt+1 = DXt Xt = BYt

BYt = DBYt

Yt = BTDBYt

Yt = GYt

=

=

=

G = BTDB



Projected Dynamics
Model Reduction

G = BTDB

==

=

=



Graphical Models
Dynamical Models
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p(Yt|Yt�1) = N (Yt|GYt�1,�)

p(Xt|Yt) = N (Xt|BYt,⌃)

p(Y1) = N (Y1|µ,V)

Xt

Yt · · ·Yt+1 Yt+2 Yt+F

Xt+FXt+2Xt+1

Latent Space

Data Space

p(X1, · · · ,XF ) =

Z
p(X1, · · · ,XF ,Y1, · · ·YF )dY

=

=



Nonlinear Dynamical Models?
• Linear-Gaussian Models work for individual activities
• Nonlinear Latent Variable Models:

• Density Networks

• Generative Topographic Mapping

• Kernel PCA

• Gaussian Process Latent Variable Models

• Nonlinear Dynamics:
• Switching Linear Dynamical Models

• Gaussian Process Dynamical Models

• Sampling-based methods (i.e., Particle Filters)



Reading List
• Pavlovic et al. Learning Switching Linear Models of 

Human Motion
• Lawrewnce et al. Gaussian Process Latent Variable 

Models for Visualisation of High Dimensional Data
• Fleet, Motion Models for People Tracking.
• Ramakrishna et al., Reconstructing 3D Human Pose 

from 2D Image Landmarks, 2012.


