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Debate Advice

Affirmative Team

- Thesis Statement: Every (good) paper has a thesis.

What is the most provocative statement the paper Is
trying to make”?

Spill the beans early: Explain the key insight of the
paper as soon as possible. Like on Slide 1.

» Teaser: Show an example result first so that it's clear

to everyone what the goal is. Also mention the input,
clearly.

Equations: Explain them carefully or don't include
them.



Debate Advice

Improvement Team

- Examine the Thesis: Is it sound? Does it over-
reach” |s It practically useful?

- State a Core Objection: State a Core Objection
early In the process.

- Explain limitations: Usually in the paper.
Assumptions, model restrictions, computation, etc.



Human Motion

How can we model human motion?
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Why Model Motion”?



Why Model Motion®
Labeling
X : Point Position at time ¢

Z; - Point Label attime ¢t



Why Model Motion®

3D Reconstruction

-Xl Xo X3 X4 Xp
Xe=| Y1 Yo Y3 Yy - Yp




Why Model Motion”

Action Recognition



KNowns and Unknowns

There Is structure in human pose and motion
N <,

\%\ |

Keyframing t Reconstruction

Labeling Recognition



| ecture In One Slide

Notation
X B

Dynamics Latent Variable Model

Yir1 G Yy

Latent Dynamics



Representing Pose

Configuration Space

D Features D Points D Joint Angles

X, € RP

Observation



The Space of Actions




Human Motion

Frame-wise Independent

p(Xy,- -, Xp) = p(X1)p(X2) - p(XF)







Autoregressive Models

First-order Markov Model




First-Order Markov Models

Linear Dynamics




Markov Models

First Order

Xt_|_1 — DXt D - RDXD




Markov Model

Reconstruction
):(t—l—l X,
Xt42 Xt41
X3 _D | Xtro




First-order AR

Reconstruction

— Ground truth
— Reconstructed




Autoregressive Models

First-order Markov Model




First-Order AR

Prediction
Xy D
Xt42 D-
Xt_LS — ]:)3 Xt
X1 Fa D*

Observability Matrix



First-Order AR

Linear Prediction

— Ground truth

— Predicted
Xt D
X, D?
Xt _ | D’
Xt ri1 D¥




First-Order AR

Prediction Generalization

Xtk D
Xt4+1+k D*
Xito1k | = | D? Xk




First Order AR

Prediction Generalization

— (Ground truth
— Predicted




Autoregressive Models

First-order Markov Model

p(Xt|Xt—1) — N(Xt|DXt—17 E)



|deas”?



Autoregressive Models

Second-Order Markov Model




AR Models

Second-Order Systems

D < RDXZD




Considerations

AR systems

Complexity: Curse of dimensionality, computation,
compaction”

 Predictive Precision: How accurately does the
model predict observations”?

» Generalization Ability: How well does the model
generalize to new data”?



Considerations

Trade-offs

- Memory: How far back should you look”? How
much is it worth in extra dimensionality”?

- Linearity: How much of a limitation is the linearity
of the dynamical system?



Singular Values of D
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|deas”?



Pose Correlations

Latent Variable Models

» How many degrees of freedom are there really”?

Xy NN(:“? Z)




| atent Variable Models

Linear Models

A




| Inear Projection

Principal Component Analysis

Y,

X¢ B

Latent Variable Model

{Xn} - Training Data X; € RY

Y. cRM M<D



Probabllistic PCA

Distribution

p(Xt‘Yt)

Xt — BYt —|— ,u —I— €
p(Y¢) = N (z[0,1)

p(Xe|Yy) = N(XyBY; + 1, 0°T)



Probabllistic PCA

Generative View of PCA




Probabilistic PCA

Sampling Standing Up

Xt NN(U? 2)



Probabilistic PCA

Sampling Standing Up

p(X¢|Ye) = N (X BY; + p, 0°T)



Graphical Model

Component Analysis

Xt:BYt+/L+€

Y1 Y5 Y

X1 Xo X3 XD



Graphical Model

Component Analysis

Xt:BYt+[L—|—€

Latent Space

Data Space .




PCA Works!

Less than 5cm max-error with <30 components
Max. PCA Recon. Error per Action
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Well...Somewhat...

PCA works when Action is Known
Performance of PCA Wlth Data Diversity

—1 actions.

3 actions.
—'( actions.
— 10 actions.
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Overcomplete Dictionaries

Ramakrishna et al. 2012

arg H\l{in HXt — BYt||2

X; =BY; X;=BY;

L1-norm “encourages” sparsity in Y




3D Reconstruction

Reprojection Error Decreases at Each lteration

[teration No.: 1

-

R R R DR pr et e I e o, o




3D Reconstruction

3D Pose and Camera

[teration No.: 1
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Dynamical Moadels

Graphical Models

Latent Space ﬁ? .. ?
Data Space .—).—)‘ . ‘



| inear Dynamma\ System

Graphical Summar

209

X1 =DX;, X:=DBY;

odel



Model Reduction

Dynamics in the Latent Space

Xt—l—l — DXt Xt — BYt

BYt — DBYt
Y, = B'DBY,
Yt — GYt



Model Reduction

Projected Dynamics

G =B'DB




Dynamical Moadels

Graphical Models




Latent Space

Data Space ‘ ‘ ‘

p(X17”°7XF):/pX17 7XF7Y17'”YF)dy

p(Y Y1) = N(Y{|GY,,T") [~
p(Xt‘Yt) — N(Xt|BYt, Z) I

p(Y1) = N(Y1|p, V)




Nonlinear Dynamical Models”

« Linear-Gaussian Models work for individual activities

« Nonlinear Latent Variable Models:

Density Networks
Generative Topographic Mapping
Kernel PCA

(Gaussian Process Latent Variable Models

*  Nonlinear Dynamics:
Switching Linear Dynamical Models
Gaussian Process Dynamical Models

Sampling-based methods (i.e., Particle Filters)



Reading List

Pavlovic et al. Learning Switching Linear Models of
Human Motion

Lawrewnce et al. Gaussian Process Latent Variable
Models for Visualisation of High Dimensional Data

Fleet, Motion Models for People Tracking.

Ramakrishna et al., Reconstructing 3D Human Pose
from 2D Image Landmarks, 2012



